This paper is concerned with ab initio crystal structure relaxation under a fixed unit cell volume, which is a step in calculating the static equations of state and forms the basis of thermodynamic property calculations for materials. The task can be formulated as an energy minimization with a determinant constraint. Widely used line minimization-based methods (e.g., conjugate gradient method) lack both efficiency and convergence guarantees due to the nonconvex nature of the determinant constraint as well as the significant differences in the curvatures of the potential energy surface with respect to atomic and lattice components. To this end, we propose a projected gradient descent algorithm named PANBB. It is equipped with (i) search direction projections for lattice vectors, (ii) distinct curvature-aware initial trial step sizes for atomic and lattice updates, and (iii) a nonrestrictive line minimization criterion as the stopping rule for the inner loop. It can be proved that PANBB favors theoretical convergence to equilibrium states. Across a benchmark set containing 223 structures from various categories, PANBB achieves average speedup factors of approximately 1.41 and 1.45 over the conjugate gradient method and direct inversion in the iterative subspace implemented in off-the-shelf simulation software, respectively. Moreover, it normally converges on all the systems, manifesting its robustness. As an application, we calculate the static equations of state for the high-entropy alloy AlCoCrFeNi, which remains elusive owing to 160 atoms representing both chemical and magnetic disorder and the strong local lattice distortion. The results are consistent with the previous calculations and are further validated by experimental thermodynamic data.